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Problem 

• Car recognition in surveillance domain with labeled training 

images from web domain which different in camera view-

angle, lighting, weather condition, etc. 

Contribution 

• Certain challenges are better handled in the image space, 

while others are better handled in the feature space. 

• A novel UDA framework that adapts at multiple levels from 

pixel to feature, with complementary insights for each type 

of adaptation. 

• Feature-level DA: classification-aware domain 

adversarial neural network. 

• Pixel-level DA, attribute-conditioned CycleGAN & 

warping-based pose translations. 

• A new experimental protocol on car recognition in 

surveillance domain. 

• We propose a joint UDA framework by leveraging complementary tools that 

are better-suited for each type of adaptation challenge. 

• Importance & complementarity of each component are demonstrated through 

experiments on an application of car recognition in surveillance domain. 

 Unsupervised Domain Adaptation 

• Domain adversarial neural network: Ganin et al. 

• Maximum mean discrepancy: Saito et al. 

 Perspective Transformation 

• Direct image generation: Tatarchenko et al. 

• Warping-based: Zhou et al. 

 Image-to-image Translation 

• Image translation with perspective transformation: 

CycleGAN - Zhu et al. 
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 Domain Adversarial Feature Learning  Analysis on Pixel-level Adaptation 
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Baseline: Domain Adversarial Neural Network (DANN) 

Classification-Aware Adversarial Learning (DANN-CA) 

  Pixel-level Cross-Domain Image Translation 

• Perspective Synthesis by Appearance Flow 

• Photometric Transformation by CycleGAN 

 Analysis on Feature-level Adaptation 
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 Analysis on Joint Pixel and Feature (PnF) 

F: Improve Domain Alignment P: Improve Training Stability 
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