We are hiring CV and ML researchers

Gotta Adapt 'Em All: Joint Pixel and Feature-Level **Domain Adaptation for Recognition in the Wild**

Xiang Yu² Kihyuk Sohn² Luan Tran¹ ¹Michigan State University

Problem & Contributions §3. Feature-level DA Model / Domain CNN Classifier **Unlabeled SV images** Labeled web images §4.2. Perspective §4.1. Photometric

Problem

Car recognition in surveillance domain with labeled training images from web domain which different in camera viewangle, lighting, weather condition, etc.

Contribution

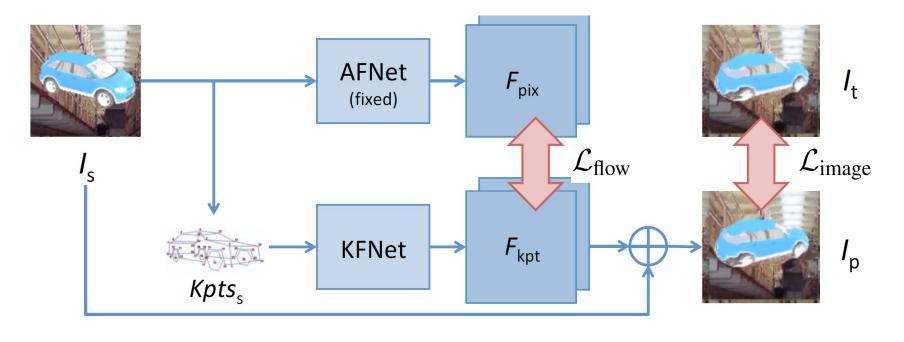
- Certain challenges are better handled in the image space, while others are better handled in the feature space.
- A novel UDA framework that adapts at multiple levels from pixel to feature, with complementary insights for each type of adaptation.
- Feature-level DA: classification-aware domain adversarial neural network.
- Pixel-level DA, attribute-conditioned CycleGAN & warping-based pose translations.
- A new experimental protocol on car recognition in surveillance domain.

Related Works

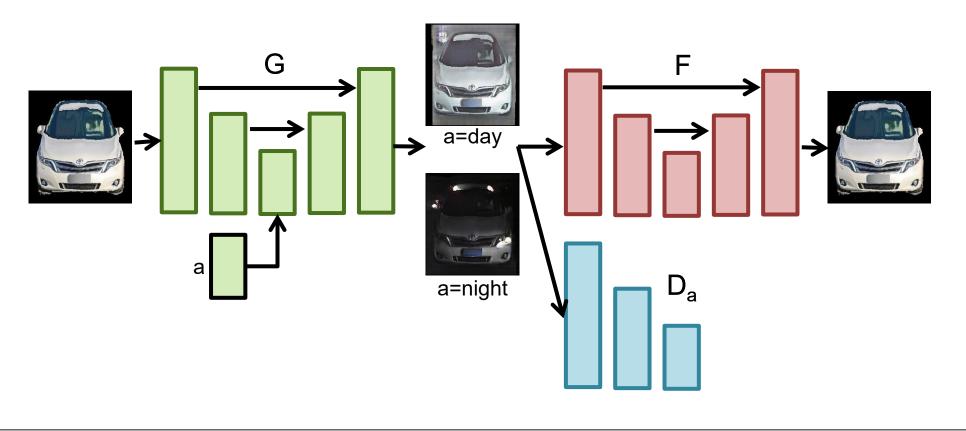
- Unsupervised Domain Adaptation
- Domain adversarial neural network: Ganin et al.
- Maximum mean discrepancy: Saito et al.

Perspective Transformation

- Direct image generation: Tatarchenko et al.
- Warping-based: Zhou et al.

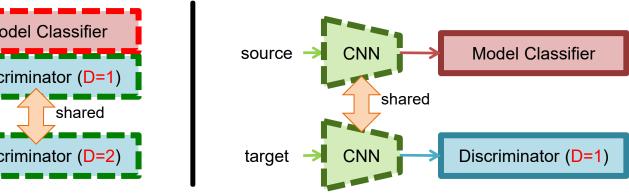

Image-to-image Translation

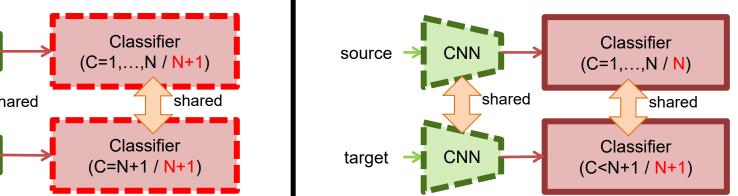
• Image translation with perspective transformation: CycleGAN - Zhu et al.


Domain Adversarial Feature Learning Model Classifier source Discriminator (D=1) shared Discriminator (D=2) target target Classifier source source (C=1,...,N / N+1)shared Classifie target target (C=N+1 / N+1

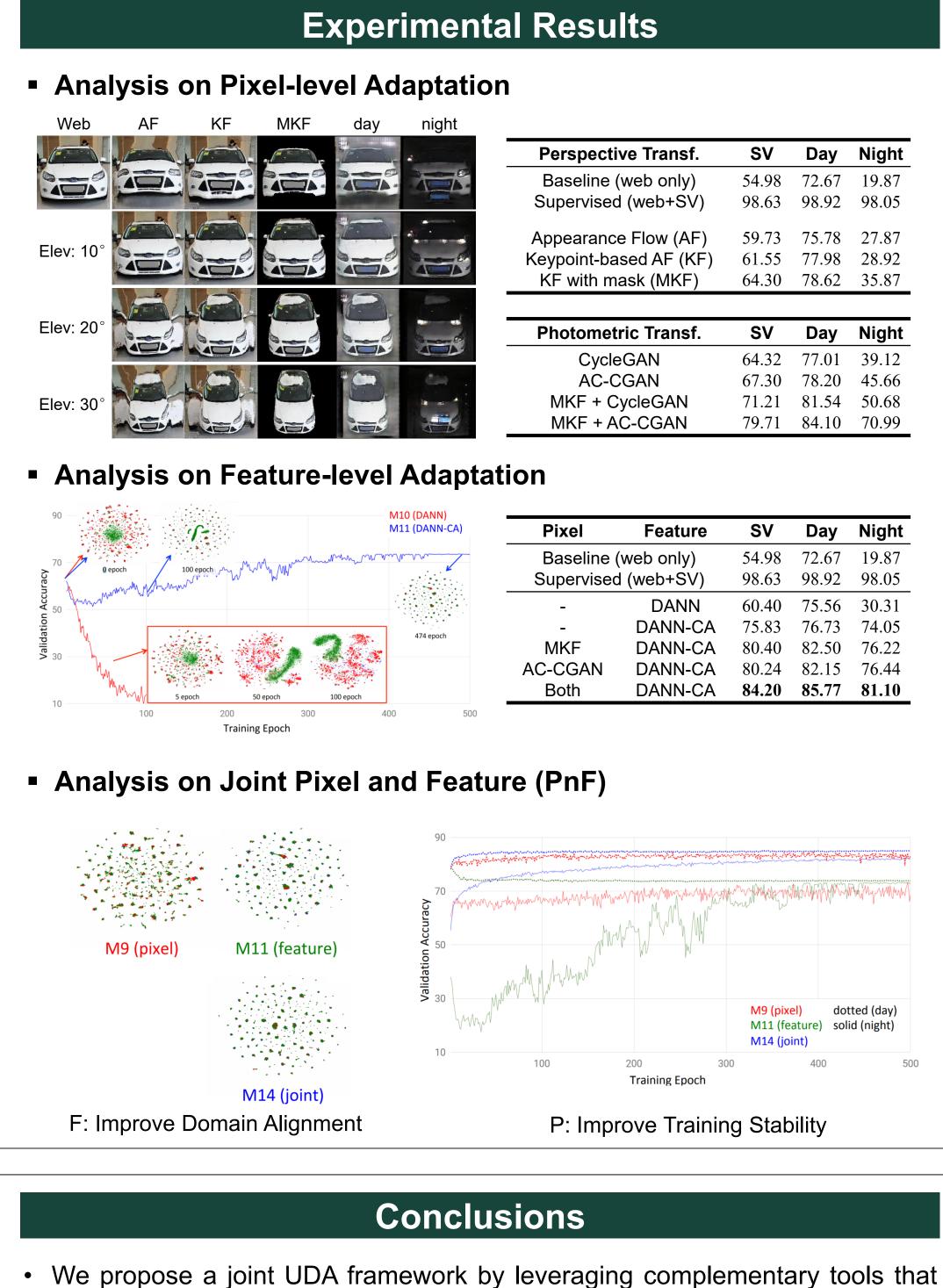
Classification-Aware Adversarial Learning (DANN-CA)

Pixel-level Cross-Domain Image Translation


• Photometric Transformation by CycleGAN


Xiaoming Liu¹ ²NEC Labs America

Manmohan Chandraker^{2,3} ³UC San Diego


Pixel and Feature-level Domain Adaptation

Baseline: Domain Adversarial Neural Network (DANN)

• Perspective Synthesis by Appearance Flow

ИKF	day	night				
			Perspective Transf.	SV	Day	Night
			Baseline (web only)	54.98	72.67	19.87
and Market and	Texaster and	- Hand	Supervised (web+SV)	98.63	98.92	98.05
			Appearance Flow (AF)	59.73	75.78	27.87
-0			Keypoint-based AF (KF)	61.55	77.98	28.92
			KF with mask (MKF)	64.30	78.62	35.87
-		and a	Photometric Transf.	SV	Day	Night
			CycleGAN	64.32	77.01	39.12
		en .	AC-CGAN	67.30	78.20	45.66
	L'	10 m. *	MKF + CycleGAN	71.21	81.54	50.68
			MKF + AC-CGAN	79.71	84.10	70.99

M10 (DANN) M11 (DANN-CA)	Pixel	Feature	SV	Day	Night
Winner Marken		web only)	54.98 98.63	72.67 98.92	19.87 98.05
	-	DANN	60.40	75.56	30.31
474 epoch	- MKF	DANN-CA DANN-CA	75.83 80.40	76.73 82.50	74.05 76.22
100 epoch	AC-CGAN Both	DANN-CA DANN-CA	80.24 84.20	82.15 85.77	76.44 81.10

are better-suited for each type of adaptation challenge.

• Importance & complementarity of each component are demonstrated through experiments on an application of car recognition in surveillance domain.